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SUMMARY

Looking forward towards mesh adaptivity for simulating turbulent atmospheric=oceanic �ows, we are
pursuing advanced algorithms for evaluating vector di�erential operators cast in time-dependent
curvilinear co-ordinates. In this paper, we review our e�ort to date with the development of a deformable-
co-ordinates multi-scale anelastic model designed from the bottom-up relying on strengths of
non-oscillatory transport methods. We have shown in earlier works that e�ective multi-scale adap-
tive numerical models for high-Reynolds-number meteorological �ows can be designed that dispense
with rigorous evaluation of the more cumbersome of the vector di�erential operators, such as the curl
or the strain rate. These operators are nonetheless important for budget analyses of the model results,
estimating physical uncertainties, driving the mesh adaptivity itself, and extending the model’s appli-
cability beyond standard meteorological situations. Here, we discuss selected extensions of the generic
explicitly inviscid approach. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: geophysical turbulence; large eddy simulation; �nite di�erence methods for �uids; mesh
adaptivity

1. INTRODUCTION

The Earth’s atmosphere and oceans are essentially incompressible, highly turbulent �uids.
Recently [1], we summarized the e�cient application of non-oscillatory forward-in-time (NFT)
methods to accurately simulate a broad range of �ows in these �uids. In particular, we
demonstrated that NFT methods o�er a means of implicit subgrid-scale (SGS) modelling
that can be quite e�ective in assuring a quality large-eddy-simulation (LES) of high Reynolds

∗Correspondence to: Piotr K. Smolarkiewicz, National Center for Atmospheric Research, Boulder, CO 80307, U.S.A.
†E-mail: smolar@ucar.edu

Contract=grant sponsor: Department of Energy

Received 27 April 2004
Revised 17 August 2004

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 17 August 2004



790 P. K. SMOLARKIEWICZ AND J. M. PRUSA

number geophysical �ows. The implicit SGS property of NFT methods‡ is especially important
where complications such as large span of scales, density strati�cation, planetary rotation,
inhomogeneity of the lower boundary, and inhomogeneity of the numerical grid, make explicit
modelling of subgrid-scale motions di�cult.
Looking forward towards mesh adaptivity for simulating geophysical turbulence, we have

developed a generalized mathematical framework for the implementation of deformable co-
ordinates in a generic Eulerian=semi-Lagrangian NFT format [5, 6]. The key element of the
framework is a time-dependent co-ordinate transformation, implemented rigorously throughout
the governing equations of the non-hydrostatic anelastic model for simulating a broad range of
idealized atmospheric=oceanic �ows on scales from micro to planetary [1]. A computational
model that is designed from the bottom-up combining NFT algorithms and generalized co-
ordinates is ideally suited for continuous grid adaptation. The robust performance of NFT
methods enables the ability to mimic ‘nested’ grids [5] and to accommodate large-amplitude
undulations of the model boundaries [6]. The ability of NFT methods to supply an e�ective
implicit SGS model facilitates LES studies in generalized co-ordinates by obviating the task
of incorporating viscous stress; whereas evaluating the vorticity (in generalized co-ordinates)
is not required due to the momentum=velocity formulation of the governing equations.
Although not imperative for simulating geophysical turbulence, rigorous and accurate repre-

sentation of the vector di�erential calculus in generalized co-ordinates is important. The curl
operator, ∇×, is essential for accurate evaluation of vorticity=potential-vorticity budgets—
a discriminating tool for analysing complex vortical �ows (see Reference [7] for an exam-
ple). The strain-rate tensor, [∇v + ∇vT], is a key element of direct numerical simulation
(DNS). Knowledge of its exact form in generalized co-ordinates allows one to extend the
expertise of meteorological models to low-Reynolds-number �ows, in the spirit of laboratory
studies which often supplement research on the dynamics of atmospheres and oceans (e.g.
References [1, 7, 8]). Also, it is a key element of explicit SGS models that are useful, beyond
standard LES studies, for diagnosing SGS �uctuations and �ow uncertainties. Finally, because
the curl and gradient operators emphasize fundamental aspects of �uid �ows, they may serve
well as discriminating indicators for driving the grid adaptivity itself.
In this paper we review our e�ort to date with the development of an adaptive multi-scale

anelastic model for geophysical �ows, proven already useful in a generic explicitly inviscid
form. In particular, we discuss the evaluation of fundamental di�erential operators cast in
generalized time-dependent co-ordinates. Our concern is with the assurance that the result-
ing �nite-di�erence formulations minimize truncation-error departures from vector di�erential
identities, such as ∀�(x; t)∇ × ∇�≡ 0, ∀A(x; t)∇ • ∇ ×A≡ 0, and that the strain and strain-
rate tensors remain objective (viz. observer independent [9]). These properties (in general, of
exterior derivative in the Cartan-algebra of di�erential forms [10]) are particularly important
for meteorological applications. Their violations can result in spurious vorticity production
at free-slip boundaries, boundary layer separations, drag in potential �ows, eddy shedding
in the lee of mountains, and generation of turbulence from planetary rotation, to name a
few. Although the importance of respecting vector di�erential calculus in numerical models is
widely appreciated, and the principles underlying suitable approximations are well established

‡For a theoretical rationale and result analysis using methods employed in this study see References [2] and [3, 4],
respectively.
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for centred-in-space �nite-volume discretizations, the extensions to NFT methods are seldom
addressed [11].
The fundamental di�erential operators have a tangible, physical existence that is independent

of any co-ordinate-based description. However, co-ordinate-based representations are neces-
sary for computing the explicit form of all requisite terms. Since the precise form of the terms
depends upon the co-ordinate system being used, a tensor representation is preferable. The
latter reveals [5] three distinct forms of velocity (physical, contravariant, and solenoidal)
helpful for designing an e�cient, high-Reynolds-number NFT �uid solver in generalized
co-ordinates. Applications addressed here also require consideration of the covariant form.
With the four distinct forms of velocity and numerous identities—which arise from the co-
ordinate-invariance of geometric properties of the time-evolving physical domain—there are
a number of various co-ordinate-dependent operator representations. Although they are all
analytically equivalent, they lead to various numerical approximations that are not equally
e�ective.
The paper is organized as follows. In the following section we outline the governing

anelastic-model equations and summarize the computational approach. In Section 3, we dis-
cuss extensions for curvilinear representation of the vorticity, Fickian di�usion, strain, and
stress. Section 4 concludes the paper with an example of a strongly strati�ed rapidly rotating
�ow past a long winding valley, an outstanding problem of mesoscale meteorology.

2. ANELASTIC FLUID MODEL IN DEFORMABLE COORDINATES

2.1. Motivation

Because of the enormous span of the spatial and temporal scales, and the wave phenomena
important in geophysical �uids, explicit integrations of generic compressible equations are
impractical for the majority of applications. In order to account for this broad range of scales,
while deriving a numerical model still useful with existing computational resources, one has
no choice but to invoke analytic or numerical approximations that allow for reasonably large
time-step integrations of the governing equations. In e�ect, meteorological models encompass a
variety of approximate (�ltered) systems of �uid equations (e.g. hydrostatic, elastic, anelastic,
Boussinesq, cf. Reference [12]) and engender many split-explicit or semi-implicit methods for
their integration [13].
For research studies of all-scale geophysical �uids, we have found the anelastic non-

hydrostatic system bene�cial. The anelastic approximation may be thought of as a generalized
Boussinesq approximation where the e�ects of density variations on mass balance and inertia
are neglected in the equations of mass continuity and momentum, but are accounted for in the
buoyancy forces. The classical, incompressible, Boussinesq system is applicable to shallow
motions with small material displacement compared to characteristic vertical scale of the �uid,
thereby allowing for a simple uniform reference state. The anelastic approximation extends
this concept by accounting for the density=temperature strati�cation of the static background.
Although the non-hydrostatic anelastic equations are known to be accurate for modelling
the elements of weather and climate up to synoptic scale [14], their suitability for global
weather and climate prediction has been often criticized—recently, using arguments of linear
normal mode analysis [12]. Notwithstanding, our numerical results [15, 16] document that the
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anelastic equations adequately capture a range of idealized planetary �ows. This has important
practical consequences. Inherent in the anelastic system are (i) the Boussinesq linearization
of the pressure gradient forces and the mass �uxes in the momentum and mass continuity
equations, respectively, and (ii) the anelasticity per se, equivalent to taking the limit of an
in�nite speed of sound. Working in concert, these two approximations greatly simplify the
design of second-order accurate, �exible, and computationally e�cient (viz., implicit with
respect to inertia-gravity waves) research models for a broad range of geophysical �ows. This
is especially important within the class of NFT models, where two-time-level self-adaptive
non-linear numerics lead inevitably to di�cult non-linear elliptic problems for the implicit
discretization of the fully compressible Euler equations. From the viewpoint of numerical
engineering, the anelastic model transmutes easily into either a compressible=incompressible
Boussinesq, or an incompressible Euler system [15].

2.2. Analytic formulation

To address a broad class of geophysical �ows in a variety of domains,—with, optionally,
Dirichlet, Neumann, or periodic boundaries in each direction—we formulate (and solve) the
governing equations in transformed co-ordinates (t; x; y; z) within a computational domain S t
with, in general, cuboidal, toroidal, or a spheroidal topology implied by the physical boundary
conditions. The co-ordinates (t; x; y; z) in the physical domain Sp are assumed orthogonal and
stationary—Cartesian or spherical are typical examples. The physical domains admitted under
the homeomorphism

( t; x; y; z)≡ (t; E(t; x; y); D(t; x; y); C(t; x; y; z)) (1)

cover a range from the canonical Cartesian box, to spherical shells with irregular undulating
boundaries. In the latter case, the topology of the cuboid is still an option. By removing an
arbitrary small circle about the poles, the traditional di�erentiation across the pole is replaced
with Neumann boundaries on the circle, thereby simplifying the use of the same model for
both global and small-to-mesoscale applications. This option is important for improving com-
munications in the massively parallel variant of the model code when a grid deforms in the
vicinity of the poles. The assumption in (1) that the transformed horizontal co-ordinates (x; y)
are independent of the vertical co-ordinate z follows the primary hydrostatic structure of the
atmosphere and oceans and simpli�es the metric terms. Examples of mappings embedded in
(1) include the classical terrain-following co-ordinates of Gal-Chen and Somerville [17], their
time-dependent extensions [6, 18], as well as a horizontal stretching whereby the horizontal
co-ordinates in St are arbitrary (in theory subject to C2 continuity; cf. Reference [5]) functions
of the time and horizontal co-ordinates in Sp.
Given transformation (1), the anelastic equations of Lipps and Hemler [19] can be written

as follows

@(�∗vsk)
@x k =0 (2)

dvj

dt
= − G̃

k
j
@�′

@x k + g
�′

�b
�3

j +Fj +Vj (3)

d�′

dt
= − vsk

@�e
@x k +H (4)
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where the physical and geometrical aspects intertwine each other. Insofar as the physics is
concerned vj denotes components of the physical velocity (de�ned in Sp);§ �, �, and �
denote potential temperature, density, and a density-normalized pressure; g is the acceleration
of gravity; Fj symbolizes the deviation of inertial forces (e.g. Coriolis and geospherical
metric accelerations) from the geostrophically balanced ambient (or environmental) state vj

e ,
�e; whereas Vj and H symbolize viscous dissipation of momentum and di�usion of heat,
respectively. Primes denote perturbations with respect to the environmental state, and the
subscript b refers to the basic state, i.e. a horizontally homogeneous hydrostatic reference
state of a Boussinesq type expansion around a constant stability pro�le (cf. Section 2b in
Reference [20], for a discussion).
The geometry of the co-ordinates in (1) enters the governing equations as follows: �∗ :=�b

G;¶ G denoting the Jacobian of the transformation (de�ned in the subsequent paragraph),
and j; k=1; 2; 3 correspond to ‘x’, ‘y’, ‘z’ components, respectively, in either Sp or St . In

the momentum equation (3), G̃
k
j :=

√
gjj (@x k=@x j) are renormalized elements of the Jacobi

matrix where summation is not implied over j, and �3
j is the Kronecker delta. The coe�cients

gjj are the diagonal elements of the conjugate metric tensor of Sp (de�ned below). The total
derivative is given by d=dt= @=@t+v∗ k(@=@x k), where v∗ k := dx k=dt := ẋ k is the contravariant
velocity. Appearing in continuity (2) and potential temperature (4) equations is the solenoidal
velocity (so named for distinction, because of the form continuity takes with it)

v s k := v∗ k − @x k

@t
(5)

that readily follows—given �b =�b(x), and the time-independent co-ordinate system in
Sp—from the tensor invariant form of anelastic continuity G−1@(�bGv∗ i)=@x i ≡ 0, where
i=0; 1; 2; 3 (i=0 refers to time t); see Reference [5] and the references therein for a dis-
cussion. Use of the solenoidal velocity facilitates the solution procedures because it preserves
the incompressible character of numerical equations. While numerous relationships can be
derived that express any velocity (solenoidal, contravariant, or physical) in terms of the other,
in either transformed or physical co-ordinate system [5], a particularly useful transformation

v s j= G̃
j
k v

k (6)

relates the solenoidal and physical velocities directly.
The elements of the metric tensor of the transformed co-ordinates are gmn= gpq(@xp=@xm)

(@xq=@xn), where gpq denotes the metric tensor of the physical co-ordinate system (which
need not be Cartesian). The Jacobian is then G= |gmn|1=2. The elements of gpq may be
computed from the de�nition of the fundamental metric ds2 = gpqdxpdxq and the linear sys-
tem gpkgkq ≡ �q

p. Employing gpq=0 for p �= q—a consequence of the assumed orthogonality
of the co-ordinates in Sp—the elements of the conjugate metric tensor, needed in (3), are

§In meteorological applications, the physical velocity is typically de�ned using a local Cartesian system and so has
dimensions of length=time; a distinct representation of the physical velocity, v j �= v j , also exists for the trans-
formed co-ordinate system; cf. Reference [5].

¶We use := to mean de�ned as, to distinguish from ≡ (identically).
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computed from gjj=1=gjj. Note that unlike gpq, the metric coe�cients G̃
q
p appearing in

Equations (3) and (6) are not symmetric (i.e. G̃
q
p �= G̃

p
q ).

2.3. Numerical approximations

Given (2), each prognostic equation of the anelastic system (3) and (4) can be written
compactly either as a Lagrangian evolution equation

d 
dt
=R (7)

or an Eulerian conservation law

@�∗ 
@t

+∇ • (�∗v∗ )=�∗R (8)

Here  symbolizes vj or �′, R denotes the associated rhs, and ∇ • := (@=@x; @=@y; @=@z)•.
The theory and performance of our NFT approach have been broadly documented in the

literature; see Reference [1] for a succint review. In essence, we approximate either (8)
or (7) to second-order accuracy in space and time, employing a formal congruency of the
Eulerian [21] and semi-Lagrangian [22] optional model algorithms, respectively. In e�ect,
either algorithm can be written in the compact form

 n+1
i =LEi( ̃ ) + 0:5�tRn+1

i (9)

where  n+1
i is the solution sought at the grid point (t n+1;xi),  ̃ :=  n + 0:5�tRn, and LE

denotes a two-time-level either advective semi-Lagrangian or �ux-form Eulerian NFT transport
operator. In the Eulerian scheme, LE integrates the homogeneous transport equation (8), i.e.
LE advects  ̃ using a fully second-order accurate multidimensional NFT advection scheme
[1, 23]; whereas in the semi-Lagrangian algorithm, LE remaps transported �elds, which arrive
at the grid points (t;xi), back to the departure points of the �ow trajectories (t n; xo(t n+1;xi))
also using NFT advection schemes [22, 24].
For inviscid adiabatic �ows, Equation (9) represents a system of equations that is implicit

with respect to all dependent variables in (3) and (4), since forcing terms are assumed to
be unknown at n + 1. This system is inverted algebraically to construct expressions for the
solenoidal velocity components that are subsequently substituted into (2) to produce an el-
liptic equation for pressure (see Reference [5] for the complete development). The elliptic
pressure equation is solved, subject to appropriate boundary conditions [5, 6], using a precon-
ditioned non-symmetric Krylov-subspace solver [25]. Given the updated pressure, and hence
the updated solenoidal velocity, the updated physical and contravariant velocity components
are constructed from the solenoidal velocities using transformations (6) and (5), respectively.
Non-linear terms in Rn+1 (e.g. metric terms arising on the globe) may require outer iteration of
the system of equations generated by (9) [15]. When included, diabatic, viscous, and subgrid-
scale forcings may be �rst-order accurate and explicit, e.g. assume SGS( n+1)=SGS( n) +
O(�t) in Rn+1, see Section 3.5.4 in Reference [23]. For extensions to moist processes, see
Reference [16].
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3. EXTENSIONS: CURVILINEAR OPERATOR CALCULUS

3.1. Tensor identities

Developments in this paper make use of several tensor identities. For the reader’s convenience,
here, we highlight two of them that we have found particularly useful both for manipulating
analytic tensor �elds into forms preferred in the numerical model and for evaluating transfor-
mation coe�cients in the model code.‖

The �rst identity, although elementary, has profound implications for the implementation
of the operator calculus in the numerical model. In a four-dimensional space, it consists of
16 simultaneous equations (di�erential identities) that relate the elements of the Jacobi and
inverse Jacobi matrices of the transformation de�ning St

�r
s ≡ @xr

@xq

@xq

@xs
(10)

Given our speci�ed functional form for the transformation, (1), 6 of these reduce to trivial
statements (i.e. 0=0 or 1=1), leaving 10 equations relating 20 metric coe�cients. Since in
our model the problem is solved in St , the physical co-ordinates of Sp are treated as dependent
variables, that is, xq= xq(xr). Once the @xq=@xs have been determined (either analytically or
numerically), the simultaneous equations (10) are used to determine the inverse metric coef-
�cients @xr=@xq. The use of these di�erential identities is important for ensuring conservative
properties of the numerical model. The latter becomes exposed in the proof (not shown) of
the second identity

G
G

@
@xr

(
G@xr

G@xs

)
≡ 0 (11)

termed the geometric conservation law, or GCL.∗∗ The left-hand side can be recognized as
the divergence in St of the contravariant form (1=G)@xr=@xs multiplied by the Jacobian of
Sp. This form gives weighted ‘velocities’ (s=0), or ‘stretching factors’ (s=1; 2; 3) between
Sp and St . Evidently, (11) is a set of four statements about the conservation of space.
Various components of the GCL have been recognized as being of fundamental importance in
numerical models for curvilinear co-ordinates for 25 years [26]. The generalized GCL in (11)
arises naturally from the co-ordinate invariance of conservation equations written in tensor
form, and the use of the di�erential identities (10) is important for satisfying the GCL.

3.2. Vorticity

The physical de�nition of vorticity, !=∇ × v, is independent of the choice of co-ordinate
system that one uses to describe a �uid �ow. In curvilinear co-ordinates, however, one needs
to carefully distinguish between covariant and contravariant (as well as mixed) forms in order
that a physical vorticity with appropriate dimensions may be recovered, for this is what we
would observe in a laboratory or in the �eld.

‖For examples, see discussion surrounding Equation (13) in Reference [6].
∗∗This version of GCL has been used to derive (2) from the tensor invariant anelastic continuity equation;
cf. discussion following (5).
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Following the notation of the preceding section, we begin with the formal de�nition of
vorticity in the co-ordinate-invariant covariant tensor form, cf. Reference [27]:

!∗
jk = v∗

k; j − v∗
j; k (12)

Here, v∗
j denotes the covariant velocity distinguished from the contravariant velocity v∗j only

by the index position,†† and indices following a comma refer to covariant di�erentiation; i.e.
evaluating elements of the gradient operator. In particular, for the covariant velocity

v∗
j; k =

@v∗
j

@x k −
{

p
jk

}
v∗

p (13)

The term in brackets is a Christo�el symbol of the second kind [27], and it appears due to
the twisting and turning of the curvilinear co-ordinates. Similar to j; k, the index p=1; 2; 3
corresponds to ‘x’, ‘y’, and ‘z’. Because !∗

jk is skew symmetric, any three independent
elements su�ce to describe the vorticity vector.
The covariant vorticity (12) is the principal form. However, we wish to develop the physical

vorticity form as a function of physical velocity gradients. In general, covariant velocities
are unavailable in the model, because they are not required to solve the governing equations.
Routinely stored are the physical velocity components vj expressed in terms of the co-ordinates
x of the transformed space St where the computation is done. In order to compute in St the
physical vorticity de�ned in Sp in terms of vj we: (i) write (12) for the reference system Sp
using the covariant velocities of the reference system v∗

j ; (ii) rewrite the covariant velocities
in terms of the physical velocities; (iii) transform all spatial derivatives into the curvilinear
space St; and (iv) extract the physical vorticity from (12). The �nal result is

!q= �qjk
√

gkkG̃
p
j
@
√
gkkvk

@xp
(14)

where �qjk is the permutation symbol, and q=1; 2; 3. The relative simplicity of expression
(14) depends on the assumption of orthogonality of (t;x) co-ordinates in Sp, see Section 2.
In order to illustrate (14) at work, we consider the numerical simulation, presented in

[6], of a �ow of an ideal 3D homogeneous Boussinesq �uid past oscillating membranes.
The membranes form impermeable free-slip upper and lower boundaries, and their shape is
prescribed, respectively, as

zs(r(x; y); t) =

{
zs0 cos2(�r=2L) sin(2�t=T ) if r=L61

0 otherwise

H (x; y; t) =H0 − zs(x; y; t)

(15)

with r=
√

x2 + y2, oscillation period T =48�t, amplitude zs0 = 51:2�z, the membranes’ half-
width L=51:2�x, where �x=�y=�z, and C(t; x; y; z)=H0(z − zs)=(H − zs) in (1). The
computational domain consists of 160× 160× 128 grid intervals, in the horizontal and vertical,
respectively, and the LE operator in (9) is semi-Lagrangian. The domain deformation is

††In any co-ordinate system, v∗
k = gjkv∗j .
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Table I. Vorticity errors in a potential �ow simulation.

Field Max |:| Average Standard deviation

�t!1 6:99× 10−2 −4:87× 10−18 1:90× 10−3

�t!2 6:98× 10−2 −3:19× 10−17 1:90× 10−3

�t!3 7:62× 10−3 2:20× 10−18 1:71× 10−4

�t∇ • !s 2:94× 10−5 −7:52× 10−18 3:75× 10−7

signi�cant, since at t=T=4, the upper and lower boundaries are separated merely by one-�fth
of the vertical extent of the model. The magnitude of the induced �ow and its variation is
approximately 5 and 0.5, respectively, as measured by C≡ ‖�tv∗=�x‖ and L≡ ‖�t@v∗=@x‖—
the (maximal) Courant and ‘Lipschitz’ numbers (cf. Reference [22] for a discussion). For
a graphic illustration of the simulated �ow we refer the interested reader to Figure 1 in
Reference [6].
Lacking diabatic forces, boundary friction, and buoyancy, the experimental set-up implies

a potential-�ow solution with zero integral pressure force on the bounding walls (D’Alembert
paradox, cf. Reference [28]). Indeed, the authors have veri�ed in Reference [6] that the
pressure drag is on the order of round-o� errors. We have computed !�t as implied by (14),
using standard centred �nite-di�erence approximations. Since the simulated �ow is clearly
potential, the residual vorticity is primarily due to the truncation error of evaluating (14)
itself. In general, we �nd the domain averaged residual vorticity(×�t) on the order of round-
o� errors, with standard deviations .2× 10−3—i.e. 3 and 2 orders smaller than the �ow
magnitude as measured, respectively, by C and L. Furthermore, divergence of the solenoidal
vorticity, evaluated from the physical vorticity by means of transformation (6), is 7 and 6
orders smaller than C and L. For illustration, Table I shows statistics from t=T=4 when
the displacement of membranes is maximal but �ow weak (C=1:2 and L=0:14) thereby
representing the worst-case scenario.

3.3. Scalar di�usion

The di�usion of heat, symbolized by the H term on the rhs of (4), is a realization of the
general problem for scalar di�usion. It is de�ned in Sp as a divergence of the Fickian �ux of
the scalar �eld �′. Starting with a pure covariant form of the �ux ∼ �′,j, after suitable tensor
algebra we arrive at

H=
1
�∗

@
@x j

(
��∗gjk @�′

@x k

)
(16)

expressed solely in St . Here, � denotes the di�usivity coe�cient with the dimension of
length2 × time−1.

3.4. Momentum dissipation

Our use of a curvilinear, though orthogonal and stationary, reference space represents a sig-
ni�cant departure from earlier transformation methods discussed in the literature of computa-
tional meteorology (e.g. Reference [17]) where all relevant formulae were derived assuming
Cartesian Sp. Although this approach—merely optional for Euclidean spaces—greatly
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simpli�es designing all-scale models for geophysical �ows, it does require rederivation of
all relevant formulae. This is particularly tedious for the Vj term on the rhs of (3). In the
interest of saving journal space, here, we only highlight the chain of thoughts that lead us
to the �nal expression for the viscous stress divergence employed in the model, additional
details may be found in Reference [29].
The derivation of the viscous stress starts with the development of the strain rate tensor.

Forthcoming from geometric principles, we begin by de�ning the strain rate tensor, �jk , in
terms of the time rate of change of distance elements when co-moving with the �ow. Then,
from the de�nition of the fundamental metric (see the paragraph following Equation (6)) we
arrive, after some algebra, at the covariant form of the strain rate tensor

�∗
jk ≡ 1

2 (v
∗
k; j + v∗

j; k) (17)

the symmetric complement of the rotation (viz, half of the vorticity in Equation (12)) to the
gradient of the covariant velocity. These are the forms which exhibit the objectivity alluded
to in the introduction. In order to compute the covariant strain rate components, (17) is
(i) written for Sp, (ii) (13) is used to expand the covariant derivatives, (iii) the covariant
velocities are rescaled into the physical velocities, and (iv) the chain rule is used to rewrite
the derivatives in terms of St . The �nal result is

�∗
jk ≡ 1

2

(√
gkkG̃

p
k
@√gjjv j

@xp
+

√
gjjG̃

q
j
@
√
gkkvk

@xq

)
− √

gmm

{
m
jk

}
vm (18)

If needed, this expression may be rescaled to yield the physical strain rate, �jk ≡
√

gjjgkk�∗
jk .

Except for the Christo�el terms (which do not cancel in this case), the physical strain rate
strongly parallels the form for physical vorticity (14).
Next we de�ne the deviatoric (or viscous) stress in Sp

�b�
∗j
k := 2	�

∗j
k + 
v∗m

;m �j
k (19)

where the two coe�cients are the molecular viscosity 	 and the bulk viscosity 
;‡‡ the mixed
strain rate tensor �∗j

k may be generated by raising an index on the covariant form given in
(18), and v∗m

;m =−vs m@ ln(�∗)=@xm from (2).
The viscous force Vj on the rhs of (3) consists of components of the divergence of the

viscous stress tensor. After suitable tensor algebra we arrive at

Vj=
1
�∗

@
@xp

(
�∗G̃

p
k
√
gjjgkk�∗ jk

)
− �∗ jk @

√gjj

@xk
+

√
gjj

{
j
lm

}
�∗lm (20)

with

�∗ jk =2�gjjgkk�∗
jk + �gjkv∗m

;m (21)

where � :=	=� is the kinematic viscosity and � := 
=� is the density normalized bulk viscosity.
The last two terms on the rhs of (20) vanish in Cartesian Sp; the �rst of them arises because
we use a hybrid form of the momentum equation that uses the physical velocity rather than
the contravariant velocity, whereas the second re�ects the intrinsic curvilinear nature of Sp.

‡‡We assume a Newtonian �uid and employ the traditional Stokes hypothesis.
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4. EXAMPLE

In Reference [5] we addressed the mesh-re�nement aspects of our curvilinear mapping ap-
proach, whereas in Reference [6] we focused on the adaptivity to variable vertical boundaries.
Here, we emphasize yet another aspect, i.e. the ability to accommodate complex horizontal
boundaries. To illustrate the potential of the advocated approach as a discovery tool in the
area of complex geophysical �ows, we highlight the original simulation of an idealized strat-
i�ed rotating �ow past a long winding valley. The Froude and Rossby numbers—respective
measures of the relative importance of the inertial to buoyancy and Coriolis accelerations—are
both about 0.6, thereby indicating signi�cant non-linearity of the simulated �ow. In spite of the
relevance to weather conditions in densely populated areas, this is a poorly understood and un-
explored problem—primarily, we believe, because of the lack of adequate mathematical tools.
The horizontal model domain in Sp is bounded by two sinusoids of the same x-wavelength
Lx=400 km, separated by constant increment 200 km in y. A cosine-shaped valley with the
depth and half-width 0.8 and 30 km, respectively, is centred in the model domain. The ver-
tical domain is 9 km deep. The ambient wind is (U; 0; 0) with U =5 m=s, and the buoyancy
frequency N =0:012 s−1 and relative humidity 92% are assumed (for a discussion of moist
thermodynamics and its numerical representation, see Reference [16] and references therein).
Boundary conditions are periodic in both horizontal directions. Lower boundary assumes par-
tial slip with typical (for mesoscale simulations) drag coe�cient Cd=10−3, and the uniform
normal heat �ux Ho=−0:01K ms−1. The boundary-sink of heat and momentum is felt in the
vertical via an arbitrarily speci�ed ‘eddy viscosity’. Its surface value �= �=0:25�z2=�t is
attenuated exponentially to zero with e-folding scale 2�z. The transformed model domain
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Figure 1. Vertical velocity (outer left panel) and cloud water mixing ratio (inner left panel) in the yz
cross section at x=120 km and cloud–water mixing ratio at bottom surface of the model (right panel);

two dotted lines along the center of the sinusoidal domain outline the extent of the valley.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:789–801



800 P. K. SMOLARKIEWICZ AND J. M. PRUSA

St is covered with 100× 50× 60 grid increments. The simulation covers 8 h of physical time
with �t=60s. Figure 1 displays the solution after 8h. The results obtained have been veri�ed
against linear estimations, and corresponding 3D=2D simulations on rectangular domains. The
bene�ts of the advocated approach are obvious: the narrower the winding valley, the more
prohibitive the cost of standard simulations on rectangular domains. Here, the gain is about
a factor of 2.
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